Diet, Reflux and Dental Erosion

Course Summary:
Dental erosion is an increasingly prevalent condition in the adolescent and adult population. Numerous acidic foods in the modern diet coupled with chronic consumption can have a dramatically destructive affect on the dentition. In addition, acid reflux disease, also called gastroesophageal reflux disease (GERD), is a common condition in the general population, with approximately 20% reporting weekly episodes of heartburn/acid reflux. The profound effects of stomach acid on the oral cavity have only come to be appreciated in the last 20 years. This presentation will help you fully appreciate the dental implications of this prevalent disease, and will increase your awareness about diagnosis and prevention of dental erosion.

This presentation will achieve the following objectives:
- Differentiate amongst the most common non-carious lesions which cause loss of tooth structure.
- Recognize common features of erosion lesions.
- List several dietary causes of dental erosion.
- Predict the location of erosion on a tooth by the source of acid.
- Briefly describe the major characteristics of gastroesophageal reflux disease (GERD).
- List some esophageal and extra-esophageal signs and symptoms of GERD.
- State the connection between dental erosion and acid reflux disease.
- Diagnose GERD induced erosion.
- Describe preventive strategies designed for patients with dental erosion.

Dr. Lazarchik received his dental degree at the University of Florida in 1984 and then a GPR certificate at the University of Alabama at Birmingham. He has 19 years of experience in academic dentistry including serving as the GPR Program Director at UAB. His primary practice focus has been hospital dentistry. Currently, as Assistant Dean, Dr. Lazarchik is responsible for the clinical education program and the operations of The Dental Center at Western University of Health Sciences in Pomona, CA. His research/clinical interests include medically complex patients, dental erosion and GERD, and the plaque control potential of carbamide peroxide.